

Supplemental Figure 1. Cellular infiltrate in the airway lumen, FEV1 and IFN-g mRNA expression in human asthma subjects. (A) Differential cell counts in BAL fluid of subjects with MMA and SA; n = 28 and 29 for MMA and SA, respectively. (B) Baseline FEV1% predicted for MM and SA subjects; n = 33 each for MMA and SA. (C) Ratio of CD4+ and CD8+ T cell percentages in the BAL fluid of MMA and SA subjects; n = 13 each for MMA and SA. For (A-C), * $p \le 0.05$, ** $p \le 0.01$, *** $p \le 0.001$, NS – not significant by Mann-Whitney test.

Supplemental Figure 2. (A) Concentration of indicated cytokines in culture supernatants of BAL cells from MMA subjects treated with or without corticosteroid therapy.; n = 6 and 8 for MMA with or without CS therapy, respectively, for IFN-g and IL-17A and n = 5 and 4 for MMA with or without CS therapy, respectively for IL-4, IL-5, IL-9, IL-12p40 and IL-13. (B) Concentration of indicated cytokines in supernatants of *ex vivo* cultured BAL cells from MMA patients on CS therapy and severe asthma patients. n = 5-6 and 14 for MMA + CS and SA, respectively, for IFN-g, IL-17A, IL-5 and IL-13 estimation, n = 5 and 8 for MMA + CS and SA, respectively, for IL-4, IL-9 estimation. For (A-B), * $p \le 0.05$, NS – non-significant using Mann-Whitney test.

Supplemental Figure 3. Cellular infiltrate in the airway lumen and cytokine mRNA expression in mouse asthma models.(**A**) Percentages of cell types in BAL fluid of mice sensitized and challenged in SA and MA Th1^{lo}Th2 models \pm Dex. * p ≤ 0.05, *** p ≤ 0.001, NS – non-significant using Student's unpaired t-test (**B**) Total lung CD4⁺ T cell numbers in mice sensitized and challenged in SA and MA Th1^{lo}Th2 models \pm Dex quantified by flow cytometry. **** p ≤ 0.0001 using One-way ANOVA with Tukey's post-hoc test. (**C**) Cytokine mRNA expression in whole lungs of mice sensitized and challenged in SA and MA Th1^{lo}Th2 models \pm Dex. ND – not detected. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, NS – not significant using One-way ANOVA with Tukey's post-hoc test. Data shown are mean \pm s.e.m and representative of 2-3 independent experiments with n = 3-4 mice per group.

Supplemental Figure 4. Cytokine mRNA expression in WT, *II17ra-/-* and *Ifng -/-* mice subjected to the SA model. Mice were subjected to the SA Model and analyzed 24 h after the final allergen challenge. (**A**) Cytokine mRNA expression in whole lungs of WT and *II17ra-/-* mice. (**B**) Cytokine mRNA expression in whole lungs of WT and *II17ra-/-* mice. (**B**) Cytokine mRNA expression in whole lungs of WT and *II17ra-/-* mice. (**B**) Cytokine mRNA expression in whole lungs of WT and *II17ra-/-* mice. (**B**) Cytokine mRNA expression in whole lungs of WT and *II17ra-/-* mice. For (**A-B**), * $p \le 0.05$, NS – not significant by Student's unpaired t-test. Data shown are mean \pm s.e.m and representative of 2-3 independent experiments with n = 3-4 mice per group.

Table 1: Airway hyperresponsiveness-related genes (IPA output)		
2210013O21Rik	ICOS	PIK3R1
ADAM12	IFNG	PLAT
ADIPOQ	lgG	platelet activating factor
ALOX5	IGHG1	PRG2
AMBP	IL4	PRMT2
arginase	IL5	PTAFR
C3	IL6	PTEN
C5	IL9	RAC1
C3AR1	IL10	Ras
C5AR1	IL13	RIPK2
C5AR2	IL18	RORC
CARD11	IL22	RUNX3
CAT	IL25	SLPI
CCL2	IL27	SMAD3
Ccl2	IL13RA2	SOCS3
CCL11	IL15RA	SPI1
CCL17	IL17A	SPON2
CCL22	IL17B	SPRED1
CCL28	IL17RA	STAT3
CCL3L3	IL1RL1	STAT4
CCR3	IL1RN	STAT6
CD44	IL27RA	TACR1
CD86	IL2RB	TBX21
CD1D	IL4R	Tgf beta
CD300LF	IL6R	TICAM1
CDH13	ITK	TLR4
CHD4	KIT	TNF
CLCA1	LAMA2	TNFAIP6
CMA1	LGALS3	TNFRSF4
CX3CR1	LTA	TNFRSF9
CXCL12	LTB4R	TNFRSF1A
CXCR4	LTC4S	TPSG1
DLL4	MAPK3	TRAF3IP2
F2RL1	MGAT5	Traj18
FLT3LG	mir-1	TSLP
GATA3	MYD88	U0126
GGT5	NFE2L2	VDR
HAS2	Nos	VEGFA
HGF	NRTN	
HRAS	PIK3CD	

Table 1. List of AHR-related genes identified using Ingenuity Knowledge Base (IKB) Diseases and Functions search bar from the IPA software.

Supplemental Figure 5. IFN-γ-regulated AHR-related genes expressed in structural cells of the lung identified using IPKB. Using IPA's Build function, AHR-related genes shown in Table 1 were specifically selected for genes expressed in the lung, epithelial cells and smooth muscle cells. Genes from this reduced set were further tested for regulation by IFN-g in the lung using Path Explorer function.

Supplemental Figure 6. Characterization of mouse airway epithelial cell brushings. qRT-PCR analysis of expression of (A) Epithelial-specific genes and (B) non-epithelial genes in whole lung and brush-harvested samples. Data shown are mean \pm s.e.m and representative of 3 independent experiments with n = 3-4 mice per group.

Supplemental Figure 7.*Ccl22* mRNA expression analyzed by qRT-PCR in epithelial brushings of MMA and SA subjects; n = 16 and 19 for MMA and SA, respectively. NS – non-significant, Mann-Whitney test.

Supplemental Figure 8. SLPI mRNA expression in different models of asthma. (A) SLPI mRNA expression in airway epithelial brushings from mice subjected to the SA, MA Th1^{lo}Th2 and MA Th2 asthma models. ** $p \le 0.01$, *** $p \le 0.001$ using One-way ANOVA with Tukey's post-hoc test. (B) SLPI mRNA expression in airway epithelial brushings of WT and *II17ra*-.- mice subjected to the severe asthma model. NS – not significant by Student's unpaired t-test. For (**A**-**B**), data shown are mean \pm s.e.m and representative of 2-3 independent experiments with n = 3-4 mice per group.

Supplemental Figure 9. c-di-GMP regulation of IFN-g production via IL-12 induction is dependent on STAT1. (A) IL-12p40 and (B) IFN-g concentrations in culture supernatants of WT and Stat1-/- BMDMs transfected with c-di-GMP. (C) *II12p35* and *II12p40* mRNA expression in lymph nodes of WT and *Stat1-/-* sensitized in the severe asthma model. (D) *Ifng* mRNA expression in whole lungs of WT and *Stat1-/-* mice sensitized and challenged in the severe asthma model. (E) *Slpi* mRNA expression in airway epithelial brushings from WT and *Stat1-/-* mice sensitized and challenged in the severe asthma model. For (A-E) * $p \le 0.05$, ** $p \le 0.01$ using Student's unpaired t-test. Data shown are mean \pm s.e.m and representative of 2 independent experiments with n = 3-4 mice per group.